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Abstract
Olfactory impairments and depressive behavior are commonly reported by individuals with Parkinson’s disease (PD) being
observed before motor symptoms. The mechanisms underlying these clinical manifestations are not fully elucidated. However,
the imbalance in dopaminergic neurotransmission seems to play an important role in this context. In patients and animal models
of PD, an increase in the dopaminergic interneurons of the glomerular layer in olfactory bulb (OB-gl) is observed, which may
contribute to the olfactory impairment. In addition, neuronal imbalance in OB is related to depressive symptoms, as demonstrated
by chemical olfactory bulbectomy. In view of that, we hypothesized that a reduction in the number or density of dopaminergic
neurons present in OB could promote an olfactory improvement and, in contrast, would accentuate the depressive-like behaviors
in the 6-hydroxydopamine (6-OHDA) model of PD. Therefore, we performed single or double injections of 6-OHDAwithin the
substantia nigra pars compacta (SNpc) and/or in the OB-gl. We observed that, after 7 days, the group with nigral lesion exhibited
olfactory impairment, as well as the group with the lesion in the OB-gl. However, the combination of the lesions prevented the
occurrence of hyposmia. In relation to depressive-like behaviors, we observed that the SNpc injury promoted depressive-like
behavior, being accentuated after a double injury. Our results demonstrated the importance of the dopaminergic neurons of the
OB-gl in different non-motor features of PD, since the selective reduction of these periglomerular neurons was able to induce
olfactory impairment and depressive-like behaviors.
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Introduction

Parkinson’s disease (PD) is the second most prevalent neuro-
degenerative disease [1, 2], accounting for 4.5–19 cases per
100,000 inhabitants per year [3, 4]. Olfactory impairment is
the first pre-motor alteration of PD [5, 6], affecting more than
90% of the patients [7–9]. Currently, non-motor disturbances,
such as depression, anxiety, hyposmia, constipation, and rapid
eye movement (REM) sleep disorders, are gaining more at-
tention in the literature since they appear before the motor
signs [5, 10, 11].

Studies with relatives of PD patients had established that
hyposmia may precede motor symptoms in 5 years [7], but
other studies affirm that this disturbance is found decades
before the motor onset [12]. In fact, it has been reported a
significant increase in the number of the dopaminergic
periglomerular interneurons located within the glomerular lay-
er of the olfactory bulb (OB-gl), which are responsible for
modulating olfactory transmission by inhibiting olfactory re-
ceptor cells and mitral/tufted neurons [8] in both humans [13,
14] and rats [15]. Hence, this mechanism raises the hypothesis
that this increased dopaminergic activity could be a compen-
satory response to the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc), possibly being related
to olfactory impairment observed in such condition [5, 16].

Depression is a psychiatric comorbidity that affects 30–
50% of PD patients [17–22] and is characterized by depressed
mood, loss of interest, and fatigue [23]. Depressive symptoms
are normally observed before motor alterations [11], and it is a
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well-known fact that there is a higher prevalence of PD-related
depression compared to other neurodegenerative diseases
[24]. There is evidence that several factors involved in the
pathogenesis of PD, such as depletion of dopamine (DA),
noradrenaline (NA) and serotonin (5-HT), and disruption of
frontal-subcortical and limbic circuitries, may contribute to
depression in these patients [20, 25–27].

Interestingly,severalstudiesreportacloserelationshipbetween
depression and olfactory impairment in a non-Parkinsonism con-
text [23,28–30]. Indeed,depression leads toolfactory impairment
by decreasing neurogenesis in the subventricular zone and, con-
sequently, preventingneuroblastmigration toolfactorybulb (OB)
[31, 32]. In addition, depression affects granular and
periglomerular interneuron activity [33], leading to a direct reduc-
tion of olfactory sensitivity [29]. Accordingly, bilateral olfactory
bulbectomy is considered amodel of depression in animals, since
surgical removal or chemical injury results in hypothalamic and
limbic alterations [32] leading to depressive-like behaviors and
reduced nigral brain-derived neurotrophic factor levels [30, 34,
35].Furthermore,nigrostriatal lesionsarestronglyassociatedwith
remarkable increases of 50 and 100% of dopaminergic
periglomerular neurons, in rats andPDpatients, respectively, both
negatively impacting olfaction [13–15].

Here, we investigated if a 6-hydroxydopamine (6-OHDA)
lesion, within the glomerular layer of the OB, would prevent
this compensatory increment in density of periglomerular neu-
rons generated by a nigrostriatal 6-OHDA-induced lesion as
an early-phase model of PD. Therefore, we expect an olfacto-
ry improvement that could be related to the occurrence of
depressive-like behaviors. Also, positive controls for anosmia
were tested in order to identify if a blockage of the olfactory
epithelium [15, 36, 37] would be able, itself, to induce
depressive-like behaviors, according to this hypothesis.

Material and Methods

Ethics Statement

All the experiments were carried out in accordance with the
guidelines of the Committee for the Care and Use of
Laboratory Animals, United States National Institutes of
Health. In addition, the protocol complies with the recommen-
dations of Federal University of Paraná and was approved by
the institutional ethics committee (approval ID no. 910).

Animals

MaleWistar rats (n = 184) from our breeding colonyweighing
280–320 g at the beginning of the experiments were used. The
animals were randomly housed in groups of five in polypro-
pylene cages with wood shavings as bedding and maintained
in a temperature-controlled room (22 ± 2 °C) on a 12:12 h

light-dark cycle (lights on at 7:00 a.m.). The animals had free
access to water and food throughout the experiment.

Experimental Design

The animals were randomly distributed in four experimental
groups (Fig. 1a): 6-OHDA (−)SNpc/(−)OB-gl; 6-OHDA
(−)SNpc/(+)OB-gl; 6-OHDA (+)SNpc/(−)OB-gl; 6-OHDA
(+)SNpc/(+)OB-gl. Signals (+) or (−) indicate infusion of 6-
OHDA or its vehicle (saline added 0.2% ascorbic acid), respec-
tively.Theexperimental designshowninFig.1b–d indicates that
on day 0, the animals underwent bilateral stereotaxic infusion of
6-OHDA in the SNpc, concomitantly to OB guide cannula im-
plantation. Six days after, we performed microinfusions of 6-
OHDA or vehicle within the OB. Afterwards, behavioral tests
were performed according to the determined time-points: 7 and
14 days following SNpc lesions (Fig. 1b–d). In parallel, brain
samples were collected on days 7 (Fig. 1b) and 14 (Fig. 1c) after
SNpc lesioning.Positive controls of anosmia (intranasal solution
of zincgluconate + zincacetate solution—Zicam)wereassigned
as follows:6-OHDA(+)SNpc/Zicam(+)olfactoryepithelium;6-
OHDA(−)SNpc/Zicam(+)olfactoryepithelium.Zicamdamages
theolfactoryepitheliumandcausesolfactory impairment [15,36,
37], and the intranasal infusion was performed also 6 days after
SNpc lesions. The third experiment, represented in Fig. 1d,
shows the anhedonic-like behavior inflicted by the experimental
conditions.

Stereotaxic Surgery

Rats were sedated with intraperitoneal xylazine (10 mg/
kg; Syntec do Brasil Ltda, Brazil) and anesthetized with
intraperitoneal ketamine (90 mg/kg; Syntec do Brasil
Ltda, Brazil). The bilateral infusion of 2 μL of 6-OHDA
(3 μg/μL) or its vehicle (saline containing 0.2% ascorbic
acid) were made using an electronic infusion pump
(Insight Instruments, Ribeirão Preto, Brazil) at a rate of
0.33 μL/min for 6 min (modified from [38]). For this, the
following coordinates were used: (SNpc) (AP) = −
5.0 mm, (ML) = ± 2.1 mm e (DV) = − 8.0 mm, using breg-
ma as reference [39]. Complementarily, a guide cannula
was implanted in the olfactory bulb of each rat allowing a
subsequent infusion of 1 μL of 6-OHDA (3 μg/μL) or
vehicle (saline with 0.2% ascorbic acid) at a rate of
0.33 μL/min for 3 min. Coordinates with reference to
bregma for implantation of guide cannula were (AP) = +
7.08 mm (ML) = 0.0 mm and (DV) = −3.6 mm [39].

Intranasal Administration of Zicam (Zinc Gluconate +
Zinc Acetate Solution)

The administration of Zicam® Oral Mist (Matrixx Initiatives,
Scottsdale, AZ, USA) was performed as previously reported
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[15, 36, 37]: the animals were sedated with ketamine (90 mg/kg)
and xylazine (3mg/kg) administered intraperitoneally. After that,
approximately 30 μL of Zicam solution was slowly delivered
into the nasal cavity using a Hamilton syringe connected to a
blunted 30-gauge needle through a polyethylene tube. The poly-
ethylene cannula was inserted 15 mm past the right external
nostril to help irrigate the olfactory epithelium. The procedure
was repeated in the left nostril. During respiration, part of the
solution was expelled through the nostril and dried with absor-
bent paper to allow the animal to continue breathing.

Olfactory Discrimination Task

This test was previously described and modified [15, 40–42].
The apparatus consisted of a box (60 × 40 × 50 cm) equally di-
vided into two compartments, connected by a door that gives free
access to the animal. Before the test, the animals were habituated
to the apparatus for 2 min, with both compartments containing
fresh sawdust. In the test, clean sawdust was added on one side of
the box (non-familiar odor) and, on the other side of the box, we
added sawdust in which the animals remained isolated for 48 h

before testing (familiar odor). The rat was placed in themiddle of
olfactory discrimination box andwe recorded, for 3min, the time
of investigation of each compartment. The animal that shows
olfactory impairment tends to explore both compartments equal-
ly, indicating absence of discrimination. As ameasure of discrim-
ination, a Bdiscrimination index (DI)^was calculated by dividing
the difference in exploration time between the two compartments
(non-familiar compartment− familiar compartment) by the total
amount of exploration for both compartments (non-familiar com-
partment + familiar compartment). DI was then multiplied by
100 to express it as a percentage.

Modified Forced Swimming Test

This test is a modified version from previous studies [43, 44].
This test consists of an opaque plastic cylinder (diameter
20 cm; height 50 cm) containing water up to 30 cm (24 ±
1 °C); on day 1, the rats were placed in the cylinder for
15 min (training session) and 24 h later, they were placed back
and tested for 5 min (test session). The test session was video
recorded via a camera positioned above the cylinder for

6-OHDA

SNpc

OB-gl

A B

C D

Fig. 1 Experimental design. a Representation of the experimental groups
(n = 184, 8–12/group). b Behavioral tests and brain sample collection
7 days after intranigral 6-OHDA infusion and c 14 days after intranigral

6-OHDA infusion. d Sucrose preference test 7 or 14 days after intranigral
6-OHDA infusion. Legends: 6-OHDA, 6-hydroxydopamine; OB, olfac-
tory bulb; SNpc, substantia nigra pars compacta
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subsequent analysis. The behaviors registered during the test
session were immobility (when the rat stopped all active be-
haviors and remained floating in the water with minimal
movements, with its head just above the water), swimming
(when the rat moved throughout the swim cylinder, including
crossing into another quadrant), and climbing (when the rat
demonstrated upward movements of the forepaws along the
cylinder walls). The time spent in each behavior was analyzed.
The water was changed and the cylinder rinsed with clean
water after each rat. Following the training and the test ses-
sions, the animals were dried and placed in their home cages.

Open-Field Test

The apparatus consists of a circular arena (1 m of diameter)
limited by a 40-cm-high wall and illuminated by four 60-W
lamps situated 100 cm above the arena floor, providing illu-
mination around 300 lx [45]. The animals were gently placed
in the center of the arena and were allowed to freely explore
the area for 5 min. During the experiments, the open-field was
video recorded and the measures for traveled distance were
computed online by an image analyzer (Smart Junior, PanLab,
Harvard Apparatus, Spain).

Sucrose Preference Test

Sucrose preference is frequently used as a measure of anhe-
donia [46–48]. Eight days before administration of intranigral
6-OHDA, the animals were transferred to single-housing
cages with free access to food. Each cage had two pre-
weighed bottles of water on opposite sides during 24 h (train-
ing phase) to adapt the rats to drinking from two bottles. After
training, one bottle was randomly switched to contain a 0.5%
sucrose solution as described previously [49, 50]. Two days
later, the bottles were reversed to avoid perseveration effects.
The bottles were weighed before being offered to the animal
and at the end of the experiment (1 week later). The sum of
water consumption and sucrose consumption was defined as
total intake. The percentage of sucrose intake was calculated
according to the following equation: % sucrose preference = (
sucrose intake / total intake) × 100. The tests began 1 week
prior to neurotoxin exposure to provide baseline values and
were completed at time-point 14 days.

TH Immunohistochemistry

Rats were deeply anesthetized with ketamine immediately af-
ter the behavior tests and were intracardially perfused with
saline first, then with 4% of the fixative solution formaldehyde
in 0.1 M phosphate buffer (pH 7.4). Brains were removed
from the skulls and were immersed for 1 week in that fixative
solution at 4 °C. Subsequently, the brains were placed in 30%
sucrose solution for 3 days and stored at − 80 °C freezer before

sectioning. Six 40 μm sections per animal were taken from the
olfactory bulb (+ 7.56 to + 7.08 mm, an interval of 480 μm)
and six sections per animal were taken from the SNpc (− 4.92
to − 5.28 mm, an interval of 360 μm): bregma − 4.92 mm and
− 5.28 mm. These sections were chosen because of their loca-
tion in the mid-rostrocaudal part of the substantia nigra, which
contains many dopaminergic neurons. Initially, the sections
were incubated (30 min) in 0.1 M phosphate saline buffer
(pH 7.4) and subsequently were submitted to endogenous per-
oxidase inhibition by incubation with 0.3% H2O2 in 0.1 M
phosphate saline buffer (pH 7.4) for 10 min. After that, the
sections were blocked in 10% 0.1 M normal goat serum in
phosphate saline buffer (pH 7.4) and next, the sections were
incubated with primary mouse anti-TH antibody, diluted in
0.1 M phosphate-buffered saline containing 0.3% Triton X-
100 (1:1.000 in SNpc sections and 1:8.000 in OB sections;
cat. no. AB152 Chemicon, CA, USA) overnight at 4 °C.
Biotin-conjugated secondary antibody incubation (1:200 in
both structures cat. no. S-1000 Vector Laboratories, USA),
was performed for 2 h at room temperature.

After several washes in phosphate-buffered saline, antibody
complex was localized using the ABC system (Vectastain ABC
Elite kit cat. no. PK6101, Vector Laboratories, USA) followed by
3,3′-diaminobenzidine reaction with nickel enhancement. The
sections were then mounted onto gelatin-coated slides and
coverslipped after dehydration in ascending concentrations of
ethanol-xylene solutions. OB manual cell counts and SNpc neu-
ronal density determination were conducted making use of the
software Image-Pro Express 6 and ImageJ, respectively.
Quantifications (number of neurons within the OB and neuronal
density of the SNpc) were performed in 6–10 tissue sections and
an average count per sectionwas determined for each animal. For
each group, a mean value was calculated and compared with
those of the other groups. The images were obtained using a
motorized Axio Imager Z2 microscope (Carl Zeiss, Jena, DE),
equipped with an automated scanning VSlide (Metasystems,
Altlussheim, DE).

Statistical Analysis

Differences between groups in the ODT were analyzed by
two-way analysis of variance (ANOVA) followed by the
Bonferroni post hoc test. Olfactory discrimination index,
modified forced swimming test, open-field test, and TH im-
munohistochemistry were analyzed by one-way analysis of
variance (ANOVA) followed by the Newman-Keuls multiple
comparison test. Sucrose preference test was analyzed by two-
way ANOVA with repeated measures followed by the
Bonferroni post hoc test. Pearson’s correlation coefficients
(r) were calculated to establish relationships between histolog-
ical and behavioral parameters. Values were expressed as
mean ± standard error of mean (SEM). The level of signifi-
cance was set at P ≤ 0.05.
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Results

Olfactory Discrimination Task

We observed, at the time-point 7 days that the 6-OHDA
(−)SNpc/(−)OB-gl group showed increased exploration (P ≤
0.001) of the familiar odor compared to the non-familiar.
Similarly, the double-lesioned 6-OHDA (+)SNpc/(+)OB-gl
group demonstrated an increased exploration of the familiar odor
(P ≤ 0.001) (Fig. 2a). In opposite, the 6-OHDA (−)SNpc/(+)OB-
gl (P > 0.99) and the 6-OHDA (+)SNpc/(−)OB-gl groups (P >
0.99), as well as the positive controls for anosmia [6-OHDA
(+)SNpc/(−) OB-gl/(+)Zicam and 6-OHDA (−)SNpc/(−)OB-gl/
(+)Zicam] exhibited similar exploration times for both odors
(P > 0.99), according to the lesion [F (5, 86) = 0.001; P > 0.99],
odor [F (1, 86) = 24.97; P < 0.0001], and interaction [F (5, 86) =
5.868; P = 0.0001] factors (Fig. 2a). The analysis of the time-

point 14 days demonstrated that the groups 6-OHDA (−)SNpc/
(−)OB-gl (P ≤ 0.001), 6-OHDA (−)SNpc/(+)OB-gl (P ≤ 0.01),
and 6-OHDA (+)SNpc/(−)OB-gl (P ≤ 0.0001) spent significant-
ly less time exploring the non-familiar odor compared to the
familiar, as indicated by the odor [F (1, 86) = 24.97; P ≤
0.0001], lesion [F (5, 96) = 3.724; P > 0.99], and interaction [F
(5, 86) = 5.868; P = 0.0001] factors (Fig. 2b). We did not find
differences regarding exploration time between odors for the
groups 6-OHDA (+)SNpc/(+)OB-gl (P = 0.73) and also for the
positive controls for anosmia 6-OHDA (+)SNpc/(−)OB-gl/
(+)Zicam (P > 0.99) and 6-OHDA (−)SNpc/(−)OB-gl/
(+)Zicam (P > 0.99) (Fig. 2b).

Figure 2c, d shows the DIs obtained from the ODTat time-
points 7 and 14 days, respectively. The group 6-OHDA
(−)SNpc/(+)OB-gl exhibited a significant impairment in the
DI compared to the 6-OHDA (−)SNpc/(−)OB-gl (P ≤ 0.05)
and the 6-OHDA (+)SNpc/(+)OB-gl (P ≤ 0.01) as indicated

A B

C D

7 DAYS AFTER INTRANIGRAL 6-OHDA 14 DAYS AFTER INTRANIGRAL 6-OHDA

Fig. 2 Olfactory discrimination task analysis. a, b Time (s) spent in
familiar and non-familiar compartments in the olfactory discrimination
task (ODT) 7 and 14 days after 6-OHDA intranigral microinfusion, re-
spectively. The bars represent the mean ± SEM (n = 12 per group), **P ≤
0.01; ***P ≤ 0.001 comparing the mean time spent in familiar and non-
familiar compartments. Two-way ANOVA followed by the Bonferroni
post hoc test. c, d Olfactory discrimination index (DI)—from a, b, re-
spectively. DI = (NF − F / NF + F) * 100, NF is the time spent in the

compartment with non-familiar odor and F is the time spent in the com-
partment with familiar odor. The bars represent the mean ± standard error
of the mean, n = 12 per group, *P ≤ 0.05; **P ≤ 0.01. One-way ANOVA
followed by the Newman-Keuls post hoc test. Legends: 6-OHDA, 6-
hydroxydopamine; OB-gl, olfactory bulb glomerular layer; SNpc,
substantia nigra pars compacta; (+) presence of 6-OHDA lesion or
Zicam administration; (−) absence of 6-OHDA lesion or Zicam (sham
manipulation)

Mol Neurobiol



by the multiple comparisons [F (5, 46) = 4.155; P = 0.0034]
(Fig. 2c). Notwithstanding, at time-point 14 days, we did not
observe changes in the DI among the groups [F (5, 53) =
1.393; P = 0.2419] (Fig. 2d).

Modified Forced Swimming Test

The results from time-point 7 days evidenced a significant
reduction of the swimming time in the group 6-OHDA
(+)SNpc/(−)OB-gl when compared to 6-OHDA (−)SNpc/(−)
OB-gl (P ≤ 0.05) group and the positive control for anosmia 6-
OHDA (−)SNpc/(−)OB-gl/(+)Zicam (P ≤ 0.01) group

(Fig. 3a). Also, the double 6-OHDA lesion group, i.e., 6-
OHDA (+)SNpc/(+)OB-gl, presented a significant reduction
of swimming time compared to the 6-OHDA (−)SNpc/(−)OB-
gl (P ≤ 0.001) and 6-OHDA (−)SNpc/(+)OB-gl (P ≤ 0.001)
groups, as well as for the positive control for anosmia 6-
OHDA (−) SNpc/(−)OB-gl/(+)Zicam (P ≤ 0.001) [F (5,
49) = 16.62; P < 0.0001] (Fig. 3a). The examination of the
same parameter at time-point 14 days showed that all 6-
OHDA-lesioned groups, that is, 6-OHDA (−)SNpc/(+)OB-
gl, 6-OHDA (+)SNpc/(−)OB-gl, 6-OHDA (+)SNpc/(+)OB-
gl, and 6-OHDA (+)SNpc/(−)OB-gl/(+)Zicam, presented a
similar reduction (P < 0.001, for all groups) when compared

7 DAYS AFTER INTRANIGRAL 6-OHDA 14 DAYS AFTER INTRANIGRAL 6-OHDA

A

C

E

B

D

F

Fig. 3 Depressive-like behaviors during the modified forced swimming
test. a Swimming time 7 days after intranigral 6-OHDA. b Swimming
time 14 days after intranigral 6-OHDA. c Immobility time 7 days after
intranigral 6-OHDA. d Immobility time 14 days after intranigral 6-
OHDA. e Climbing time 7 days after intranigral 6-OHDA. f Climbing
time 14 days after intranigral 6-OHDA. The bars represent the mean ±

standard error of the mean (n = 12 per group), *P ≤ 0.05; **P ≤ 0.01;
***P ≤ 0.001. One-way ANOVA followed by the Newman-Keuls post
hoc test. Legends: 6-OHDA, 6-hydroxydopamine; OB-gl, olfactory bulb
glomerular layer; SNpc, substantia nigra pars compacta; (+) presence of
6-OHDA lesion or Zicam administration; (−) absence of 6-OHDAlesion
or Zicam (sham manipulation)
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to 6-OHDA (−)SNpc/(−)OB-gl (Fig. 3b). Furthermore, the 6-
OHDA (+)SNpc/(−)OB-gl and 6-OHDA (+)SNpc/(+)OB-gl
groups exhibited reductions in this parameter [F (5, 49) =
17.45; P ≤ 0.0001] (Fig. 3b) compared to the control for an-
osmia 6-OHDA (−)SNpc/(−)OB-gl/(+)Zicam group (P ≤ 0.01
and P ≤ 0.001, respectively).

As depicted in Fig. 3c, the immobility time of the groups 6-
OHDA (+)SNpc/(−) OB-gl and 6-OHDA (+)SNpc/(+)OB-gl
(at time-point 7 days) appears to be equally increased in com-
parison to the 6-OHDA (−)SNpc/(−)OB-gl (P ≤ 0.05) and 6-
OHDA (−) SNpc/(+)OB-gl (P ≤ 0.01) groups. In addition,
such increment in immobility was also observed in compari-
son to the control for anosmia 6-OHDA (−)SNpc/(−)OB-gl/
(+)Zicam group (P ≤ 0.05), [F (5, 48) = 6.665; P ≤ 0.0001].
Figure 3d represents the immobility time obtained at time-
point 14 days. It is noticeable that all the 6-OHDA-lesioned

groups, that is, 6-OHDA (−)SNpc/(+)OB-gl, 6-OHDA
(+)SNpc/(−)OB-gl, 6-OHDA (+)SNpc/(+)OB-gl, and 6-
OHDA (+)SNpc/(−)OB-gl/(+)Zicam, present increased times
of immobility when compared to the controls 6-OHDA
(−)SNpc/(−)OB-gl (P ≤ 0.05) and 6-OHDA (−)SNpc/(−)OB-
gl/(+)Zicam (P ≤ 0.001) [F (5, 55) = 7.989; P ≤ 0.0001].

Complementarily, the climbing time of the groups, at
time-point 7 days, showed to be increased in the 6-OHDA
(+)SNpc/(+)OB-gl when compared to the 6-OHDA
(+)SNpc/(−)OB-gl (P ≤ 0.01) and the positive control for
anosmia 6-OHDA (−)SNpc/(−)OB-gl/(+)Zicam (P ≤ 0.05)
[F (5, 41) = 3.948; P = 0.0052] (Fig. 3e). Moreover, the
analysis of the time-point 14 days revealed significant
differences in ANOVA among groups [F (5, 47) = 2.560;
P = 0.0396], but did not show it in multiple comparisons
(Fig. 3f).

6-OHDA

Open-field Test

Sucrose Preference Test

A B

C

Fig. 4 Locomotor distance in the open-field test. a Seven days after
intranigral 6-OHDA. b Fourteen days after intranigral 6-OHDA. The bars
represent the mean ± standard error of the mean (n = 12 per group) *P ≤
0.05; **P ≤ 0.01; ***P ≤ 0.001. One-way ANOVA followed by the
Newman-Keuls post hoc test. c Percentage of the sucrose consumption
in the sucrose preference test. The symbols represent the mean (n = 8 per
group), *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. Two-way ANOVA with

repeated measures followed by the Bonferroni post hoc test. A naive
(non-operated) group was included and only received intranasal Zicam.
Legends: 6-OHDA, 6-hydroxydopamine; OB-gl, olfactory bulb glomer-
ular layer; SNpc, substantia nigra pars compacta; (+) presence of 6-
OHDA lesion or Zicam administration; (−) absence of 6-OHDA lesion
(sham manipulation)
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Open-Field Test

In the open-field test at time-point 7 days (Fig. 4a), significant
reductions in the spontaneous locomotor behavior were ob-
served in the 6-OHDA (+)SNpc/(−)OB-gl group (P ≤ 0.05)
and also in the two positive controls for anosmia 6-OHDA
(−) SNpc/ (−)OB-gl/(+)Zicam (P ≤ 0.001) and 6-OHDA
(+)SNpc/(−)OB-gl/(+)Zicam (P ≤ 0.0001) compared to the 6-
OHDA (−)SNpc/(−)OB-gl. In addition, the locomotion of the
group 6-OHDA (+)SNpc/(−)OB-gl/(+)Zicam was also reduced
compared to 6-OHDA (−) SNpc/(+)OB-gl (P ≤ 0.001) and 6-
OHDA (+)SNpc/(+)OB-gl (P ≤ 0.001), [F (5, 44) = 9.618, P <
0.0001]. Similarly, at time-point 14 days (Fig. 4b), reductions in
locomotion were detected for the groups 6-OHDA (−)SNpc/
(+)OB-gl (P ≤ 0.01), (+)SNpc/(+)OB-gl (P ≤ 0.01), and posi-
tive control for anosmia 6-OHDA (+)SNpc/(−)OB-gl/
(+)Zicam (P ≤ 0.05) compared to the 6-OHDA (−)SNpc/
(−)OB-gl group, [F (5, 56) = 4.535, P = 0.0015].

Sucrose Preference Test

The analysis of sucrose preference (Fig. 4c) revealed that only
6-OHDA double-lesioned group, i.e., 6-OHDA (+)SNpc/
(+)OB-gl, exhibited a significant reduction of sucrose con-
sumption compared to the three groups: naive/(+)Zicam
(P ≤ 0.001), 6-OHDA (−) SNpc/(−)OB-gl (P ≤ 0.05), and 6-
OHDA (−)SNpc/(+)OB-gl (P ≤ 0.01) for the time-point
7 days. At 14 days, the anhedonic behavior was still detected
in the 6-OHDA (+)SNpc/(+)OB-gl group compared to naive/
(+)Zicam (P ≤ 0.05). At the same time-point, the group 6-
OHDA (+)SNpc/(−)OB-gl also presented a significant reduc-
tion of sucrose consumption compared to naive/(+)Zicam
(P ≤ 0.01) and 6-OHDA (−)SNpc/(+)OB-gl (P ≤ 0.05), ac-
cording to the lesion [F (4, 25) = 6.639; P = 0.0009], time-
point [F (2, 50) = 6.537; P = 0.0030], and interaction [F (8,
50) = 2.413; P = 0.0275] factors.

TH Immunochemistry within the SNpc

The analysis of the dopaminergic neurons in the SNpc re-
vealed that 6-OHDA caused a pronounced neuronal loss at
both time-points (see panels at Fig. 5). Figure 5e shows the
quantification of TH-ir neuron density at time-point 7 days
revealing that 6-OHDA (+)SNpc/(−)OB-gl and 6-OHDA
(+)SNpc/(+)OB-gl exhibited significant reductions (P ≤
0.001 and P ≤ 0.05, respectively) compared to the control 6-
OHDA (−) SNpc/(−)OB-gl group. The same groups also ex-
hibited significant decrease in TH-ir neurons compared to the
6-OHDA (−)SNpc/(+)OB-gl (P ≤ 0.0001 and P ≤ 0.001, re-
spectively) [F (3, 49) = 17.26; P < 0.0001]. Likewise, at the
14 days time-point (Fig. 5j), the groups with 6-OHDA SNpc
lesion: 6-OHDA (+)SNpc/(−)OB-gl and 6-OHDA (+)SNpc/
(+)OB-gl also exhibited significant reductions in this

parameter compared to the control group 6-OHDA (−)SNpc/
(−)OB-gl (P ≤ 0.0001 for both groups) and compared to the 6-
OHDA (−)SNpc/(+)OB-gl (P ≤ 0.0001for both groups as
well). Remarkably, 6-OHDA (+)SNpc/(+)OB-gl demonstrat-
ed a further decrement in nigral TH-ir neurons compared to
the 6-OHDA (+)SNpc/(−) OB-gl (P ≤ 0.05), as indicated [F
(3, 62) = 50.25; P ≤ 0.0001].

TH Immunochemistry within the OB-gl

The dopaminergic neuronal population in the glomerular layer
of the OB is represented in Fig. 6. As can be seen in Fig. 6e
(time-point 7 days), it is indicated a significant decrease in
TH-ir neurons in the group 6-OHDA (−) SNpc/(+)OB-gl com-
pared to the groups 6-OHDA (−)SNpc/(−)OB-gl (P ≤ 0.0001)
and 6-OHDA (+)SNpc/(−)OB-gl (P ≤ 0.0001) is present.
Furthermore, 6-OHDA (+)SNpc/(+)OB-gl group also exhib-
ited a significant neuronal reduction compared to 6-OHDA
(−)SNpc/(−)OB-gl (P ≤ 0.001). However, this 6-OHDA
(+)SNpc/(+)OB-gl group presented an increased density of
TH-ir neurons compared to the 6-OHDA (−)SNpc/(+)OB-gl
(P ≤ 0.05) [F (3, 22) = 28.23; P ≤ 0.0001]. In relation to the
time-point 14 days (Fig. 6j), the 6-OHDA (−)SNpc/(+)OB-
gl group showed a significant reduction of this parameter
compared to the 6-OHDA (−)SNpc/(−)OB-gl (P ≤ 0.05) and
6-OHDA (+)SNpc/(−) OB-gl (P ≤ 0.01) groups, [F (3, 16) =
6.428; P = 0.0046].

Statistical Correlations between Behavioral
and Histological Parameters

Pearson’s correlation coefficients (Table 1) revealed a nega-
tive correlation between the percentage of SNpc TH-ir neu-
rons and immobility parameter of modified forced swimming
test at time-points 7 (r = − 0.51; P = 0.002) and 14 days (r = −
0.60; P < 0.0001). Proportionally, a positive correlation be-
tween the percentage of SNpc TH-ir neurons and swimming
parameter from the modified forced swimming test was found
also at 7 (r = 0.53; P = 0.001) and 14 days (r = 0.52; P =
0.0006). The climbing parameter also showed a positive cor-
relation with the percentage of SNpc TH-ir neurons, but only
at 14 days (r = 0.44; P = 0.005).

In addition, positive correlations between the percentage of
OB-gl TH-ir neurons and DI were identified at 7 (r = 0.59; P =
0.002) and 14 days (r = 0.45; P = 0.03). Complementarily, the
percentage of sucrose consumption exhibited a negative correla-
tionwith immobility time in both time-points: 7 (r= − 0.51;P=
0.01) and14days (r= − 0.44;P= 0.02), positivecorrelationwith
swimming time at 7 (r = 0.45; P = 0.02) and 14 days (r = 0.52;
P = 0.008), and a positive correlation with the percentage of
SNpc TH-ir neurons (r = 0.09; P = 0.67 time-point 7 days) (r =
− 0,055;P= 0.82 time-point 14 days).Moreover, the percentage
of OB-gl TH-ir neurons exhibited a negative correlation with
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immobility time (r = − 0.44;P = 0.04) and a positive correlation
with swimming time (r = 0.48; P = 0.02) but only at 14 days.
Ultimately, correlations between percentage of SNpcTH-ir neu-
rons and percentage of OB-gl TH-ir neurons were not found.

Discussion

In the present study, we observed at the first time-point, 7 days
after intranigral 6-OHDA microinfusion, that either SNpc or
OB-gl dopaminergic lesions disrupted olfaction, like Zicam,
in a very similar fashion. It has been reported an increased
number of TH-ir neurons, within the glomerular layer, on
post-mortem brains of patients with PD [13, 14] and in rote-
none animal model [15] purportedly associated with impaired

olfactory function. Curiously, at the earlier time-point, the
group 6-OHDA (+)SNpc/(−) OB-gl did not present increase
in TH-ir neurons in the OB-gl compared to the control group.

Therefore, this olfactory impairment without the increment
in periglomerular cell density agrees with previous findings,
which also report increase of dopaminergic neurons in OB-gl
after intranigral 6-OHDA administration in rats [51].
Moreover, other reports showed an even more puzzling result
that disputed the so-called TH-ir neuronal increase of OB-gl
neurons in humans, once they did not replicated their previous
study [13, 52]. In fact, our data showed that the olfactory
impairment presented in the OB-gl-lesioned group may be
due to periglomerular TH-ir neuronal loss compared to con-
trol. In this sense, our result stands that TH-ir periglomerular
neurons have a key role in olfactory modulation; thus, a
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7 days after intranigral 6-OHDA E

J
14 days after intranigral 6-OHDA

Fig. 5 Immunohistochemistry of TH-ir neurons in the SNpc. a–d
Representative photomicrographies obtained 7 days after intranigral 6-
OHDA microinfusion. e Quantification of SNpc TH-ir neurons 7 days
after 6-OHDA. f–i Representative photomicrografies obtained 14 days
after intranigral 6-OHDA. jQuantification of SNpcTH-ir neurons 14days
after 6-OHDA. a, f (−)SNpc/(−)OB-gl groups. b, g (−)SNpc/(+)OB-gl
groups. c, h (+)SNpc/(−)OB-gl groups. d, i (+)SNpc/(+)OB-gl groups.

The bars represent the mean ± standard error of the mean, (n = 4 animals,
6 slices/animal), *P ≤ 0.05; ***P ≤ 0.001. One-way ANOVA followed
by the Newman-Keuls post hoc test. Legends: 6-OHDA, 6-
hydroxydopamine; OB-gl, olfactory bulb glomerular layer; SNpc,
substantia nigra pars compacta; (+) presence of 6-OHDA lesion; (−) ab-
sence of 6-OHDA lesion (sham manipulation)
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decrease on these cells’ density negatively impacts olfactory
performance, as previously demonstrated [8]. In relation to the
double-site 6-OHDA infusion, the OB-gl lesion seems to
counteract the olfactory impairment caused by SNpc lesion.

In opposite, at time-point 14 days, both groups with lesions
in the SNpc or in the OB-gl did not present detectable olfactory
impairments, possibly as a result of compensatory mechanisms
of the main olfactory pathway. Considering the OB-gl-lesioned

group, we found that TH-ir periglomerular neurons were still
decreased compared to the control and SNpc-lesioned group,
however, not differing from the double-lesioned animals.
Remarkably, a neurotoxic-induced lesion within the OB of
mice is recovered by an increase of the newborn neurons com-
ing from the subventricular zone, where they are stem cells [53,
54]. Such cells are recruited and then migrate through rostral
pathway only differentiating in dopaminergic and GABAergic

7 days after intranigral 6-OHDA

14 days after intranigral 6-OHDA

E

J

A B

C D

F G

H I

Fig. 6 Immunohistochemistry of TH-ir neurons in the OB-gl. a–d
Representative photomicrographies obtained 7 days after intranigral 6-
OHDA microinfusion. e Quantification of OB-gl TH-ir neurons 7 days
after 6-OHDA. f–i Representative photomicrografies obtained 14 days
after intranigral 6-OHDA. j Quantification of OB-gl TH-ir neurons
14 days after 6-OHDA. a, f (−)SNpc/(−)OB-gl groups. b, g (−)SNpc/
(+)OB-gl groups. c, h (+)SNpc/(−)OB-gl groups. d, i (+)SNpc/(+)OB-

gl groups. The bars represent the mean ± standard error of the mean (n = 4
animals, 6 slices/animal), *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. One-way
ANOVA followed by the Newman-Keuls post hoc test. Legends: 6-
OHDA, 6-hydroxydopamine; OB-gl, olfactory bulb glomerular layer;
SNpc, substantia nigra pars compacta; (+) presence of 6-OHDA lesion;
(−) absence of 6-OHDA lesion (sham manipulation)
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interneurons at glomerular and granular layers, approximately
7 days post 6-OHDA injury [8]. Therefore, it is plausible to
suggest that these newborn neurons could be able to repopulate
(at least partially) the OB-gl, then recovering the olfactory sen-
sory inputs. In addition, it has been described that animals could
recover the sense of smell 8 days after a 6-OHDAOB-gl lesion,
due to compensatory mechanisms triggered by the activation of
the vomeronasal pathway and accessory olfactory system [55].
This system is being described as very primitive and is present
in several mammals [56, 57], but only in humans fetuses [55].
In rodents, this system was first associated with detection of
pheromones while common odors were perceived through the
main olfactory pathway [55, 58, 59].

Regarding the extension of the nigral lesion, the percentage of
TH-ir neurons, at time-point 7 days, was decreased only in as-
sociation with intranigral 6-OHDA, as previously reported [48,
60–63], without the influence ofOB-gl injury. However, the later
time-point showed the occurrence of a possible synergic effect,
probably due to a conceivable retrograde OB-gl lesion, affecting
SNpc. In fact, this hypothesis is supported by the description of a
direct axonal dopaminergic projection from the SNpc to the
extern plexiform layer and granular layer of the OB, which pro-
motes the perception of odorants and can mediate toxin-induced
retrograde degeneration of dopaminergic SNpc neurons [51].

TheabsenceofdifferencesbetweenTH-irneuronsinOB-glof
double-lesioned group and control group (unlike time-point
7 days) also may be interpreted as a compensatory increase in
the number of the periglomerular neurons fromOB-gl, possibly
explaining the olfactory impairment, in agreement with our pre-
vious findings in a rotenone model of PD [15]. Of note, in this
study, we demonstrated that the olfactory impairment at 7 and
14dayswereparticularlyalike to theolfactorydeficit inflictedby
intranasal Zicam, which was used as a positive control of

anosmia. This is an agent that has been described to promote a
significant cytotoxicity to human, mouse, and rat nasal tissue
given the potential development of long-lasting smell dysfunc-
tion [15, 36, 37]. Further, both positive controls for anosmia
exhibited hypolocomotion at 7 days. This result could be related
to a residual anesthetic effect due to intranasalZicamadministra-
t ion; however, ketamine is supposed to produce
hyper locomot ion in s imi la r condi t ions [64–66] .
Notwithstanding, this hypolocomotion was reversed at 14 days,
suggesting an absence of locomotor bias.

As formerly described, intranigral 6-OHDA causes increase
in the immobility time and consequent decreases in swimming
time and also reduction in sucrose consumption at 7 [63, 67, 68],
14 [48, 69, 70], and other time-points already tested [71, 72].
Remarkably, double lesion produced depressive-like behaviors,
most likely as decreased swimming, increased immobility, and
anhedonic-like behavior at both time-points tested. This outcome
is also interesting when compared to OB-gl lesion itself that only
produced behavior despair, without anhedonia, at the later time-
point, strengthening the notion of a maturation process of the
retrograde lesion. It is characterized that depression causes alter-
ations in olfactory circuits, reducing olfactory threshold, and
identification and discrimination abilities in humans [28, 29].
Analogously, patients with congenital anosmia are more expect-
ed to exhibit signs of depression [23].

Our study originally demonstrated that a dopaminergic lesion
of the OB-gl was able to produce depressive-like behaviors per-
haps as a result of dysfunctions and/or compensatory mecha-
nisms of the cortical–hippocampal–amygdala circuits that in-
volve changes in synaptic strength and/or loss of spine density
in these limbic areas [73, 74]. Besides, we found significant
correlations between OB-gl TH-ir neuron counts and immobility
time (r = − 0.44; P = 0.04) and swimming time (r= 0.48; P =

Table 1 Pearson’s correlations
between different behavioral and
histological parameters

Correlations 7 days after intranigral

6-OHDA groups

14 days after intranigral

6-OHDA groups

% SNpc TH-ir neurons × % OB-gl TH-ir neurons r = − 0.35; P = 0.08 r = 0.054; P = 0.82

% SNpc TH-ir neurons × DI r = − 0.003; P = 0.98 r = 0.2017; P = 0.19

% SNpc TH-ir neurons × immobility r = − 0.51; P = 0.002* r = − 0.60; P < 0.0001*

% SNpc TH-ir neurons × swimming r = 0.53; P = 0.001* r = 0.52; P = 0.0006*

% SNpc TH-ir neurons × climbing r = 0.19; P = 0.28 r = 0.44;P = 0.005*

% OB-gl TH-ir neurons × DI r = 0.59; P = 0.002* r = 0.45; P = 0.03*

% OB-gl TH-ir neurons × immobility r = − 0.059; P = 0.79 r = − 0.44; P = 0.04*

% OB-gl TH-ir neurons × swimming r = 0.11; P = 0.62 r = 0.48; P = 0.02*

% OB-gl TH-ir neurons × Climbing r = − 0.30; P = 0.15 r = − 0.35; P = 0.12

% sucrose consumption × DI r = − 0.10; P = 0.63 r = 0.26; P = 0.21

% sucrose consumption × immobility r = − 0.51; P = 0.01* r = − 0.44; P = 0.02*

% sucrose consumption × swimming r = 0.45; P = 0.02* r = 0.52; P = 0.008*

% sucrose consumption × % SNpc TH-ir neurons r = 0.43; P = 0.03* r = 0.45; P = 0.02*

% sucrose consumption × % OB-gl TH-ir neurons r = 0.09; P = 0.67 r = − 0.055; P = 0.82

*Significant correlations are indicated
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0.02) at the later time-point, suggesting a direct association be-
tween these periglomerular neurons and depressive-like behav-
iors. Also, a correlation between OB-gl TH-ir neuron counts and
DI of olfactory test is observed (at 7 days r = 0.59;P = 0.002 and
at 14 days r = 0.45; P = 0.03). This reduction of dopaminergic
neurons of OB-gl indicates a decrement of DI, suggesting that
these neurons are key players on the functioning of the olfactory
system. In accordance, the inhibition of the olfactory epithelium
did not cause depressive-like behaviors such as helplessness,
despair, or anhedonia. Our results demonstrated the importance
of the dopaminergic neurons of the OB-gl in different non-motor
features of PD, since the selective reduction of these
periglomerular neurons was able to induce olfactory impairment
(at acute time-point) and depressive-like behaviors (at later time-
point). At the same time, the acute OB-gl lesion counteracted the
olfactory impairment caused by the SNpc injury.
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